
Revista Informatica Economică nr. 1(45)/2008

81

Stable Structures for Distributed Applications

Ion IVAN
Academy of Economic Studies, Bucharest, România

ionivan@ase.ro
Eugen DUMITRAŞCU

Faculty of Automation, Computers and Electronics, Craiova, România
eugen.dumitrascu@cs.ucv.ro

For distributed applications, we define the linear, tree and graph structure types with

different variants and modalities to aggregate them. The distributed applications have as-
signed structures that through their characteristics influence the costs of stages for develop-
ing cycle and the costs for exploitation, transferred to each user. We also present the quality
characteristics of a structure for a stable application, which is focused on stability character-
istic. For that characteristic we define the estimated measure indicators for a level. The influ-
ence of the factors of stability and the ways for increasing it are thus identified, and at the
same time the costs of development stages, the costs of usage and the costs of maintenance to
be keep on between limits that assure the global efficiency of application. It is presented the
base aspects for distributed applications: definition, peculiarities and importance. The as-
pects for the development cycle of distributed application are detailed. In this article, we
alongside give the mechanisms for building the defined structures and analyze the complexity
of the defined structures for a distributed application of a virtual store.

Distributed applications
A distributed application or a global ap-

plication implies the access of data from
many nodes of a computers network. The
components are being executed on different
nodes, on different platforms that are con-
nected to the network.
The distributed applications are those in
which many beneficiaries or users that are in
different points of territory, access definite
resources for computer network to solve a
problem. The modern conceptions for bank-
ing transactions, inter-banking transactions,
realization of e-commerce activities, training
activities, informing activities, testing of
knowledge activities, concluded the on-line
contracts, these are just few of the distributed
applications that must characterize the infor-
mation society. Development philosophies
for e-learning, e-government, e-business, for
virtual organizations and the implementation
of new work forms are based on the princi-
ples of distributed applications IVAN06].
Each user has own set of information that he
has access. There is information that all users
have access, but there exists information that
only certain users have access. The access is

done through authentication user by way a
user name and a password.
The particularities of distributed applications
are:
• strong interfaces that permit using them by
a very diverse number of citizens;
• high generality degree that permits large
number of persons to solve their own prob-
lems;
• friendly interfaces that permit the elimina-
tion of input data errors and the abandon of
utilization;
• levels of security which guarantee that the
system of transactions is operational;
• levels of access that convenient resolve the
problem of security with the problem of
transparency;
• high level of correctness and reliability;
• the guarantee for recording sufficient in-
formation that give the possibility to recon-
stitute the information route;
• the components of any distributed applica-
tion contain two important parts: application
part and communication part; some compo-
nents contain a special part named adminis-
trative part with control role and manage role
of components;

1

Revista Informatica Economică nr. 1(45)/2008

82

• high degree of modularity and the possibil-
ity of extensibility through addition or
elimination of some software or hardware
components;
• the possibility of many more users to share
the resources;
• a large availability in case of fault of some
components;
• fault tolerance.
The term distributed application has three
aspects:
• the application A, whose functionality is
divided in n components, A1, A2, …, An,
n∈N, n>1 that interact and cooperate to-
gether; each component is a distributed ap-
plication or a process;
• the components Ai are autonomous entities
that run on different computers;
• the components Ai change information
through network.
The importance of distributed applications is
bigger and bigger in the information society.
In these days almost any application is real-
ized distributable.
A distributed application contains the proce-

dures PROC1, PROC2, ….PROCpr. Each pro-
cedure is characterized by entry points and
exit points. The procedure is called from a
single point or from a multiple points. The
procedure with many exit points has many
return instructions.
There are programming languages that de-
fined many entry points for the procedure.
We present all the situations in which a pro-
cedure appears with entry points, with exit
points and calls between procedures.
A procedure with w parameter has format
PROC(p1, p2, p3, …, pw).

PROC(p1, p2, p3, …, pw)

Fig.1. Procedure with one entry point and
one exit point

PROC(p1, p2, p3, …, pw) …..

Fig.2. Procedure with one entry point and
many exit points

PROC1(p1, p2, p3, …, pw1)

Call PROC(p1, p2, p3, …, pw)

PROC2(p1, p2, p3, …, pw2)

Call PROC(p1, p2, p3, …, pw)

PROCpr(p1, p2, p3, …, pw pr)

Call PROC(p1, p2, p3, …, pw) …

PROC(p1, p2, p3, …, pw)

Fig.3. Procedures that calls same procedure

PROC(p1, p2, p3, …, pw)

Call PROC(p1, p2, p3, …, pw)

Fig.4. Procedure with one entry point and auto call – recursive procedure

Starting from the procedure idea and call, the
procedures are nodes into a graph and the re-
alized calls are arcs between nodes. Let’s
consider two procedures PROCi and PROCj;
the graph structure of call a procedure PROCj

by PROCi is presented in Figure 5.
Each structure has the following features:
• homogeneity – all structures have the
same number of incidence arcs towards the
interior and the same number of incidence

Revista Informatica Economică nr. 1(45)/2008

83

arcs towards the exterior;
• node complexity – each node has its own
complexity;
• hierarchism – the organization of structure
by levels;
• the flow between nodes is characterized
by the intensity or the reference frequency.
The quality characteristics of the structure
are:

PROCi PROCj

Fig.5. The call of procedure PROCj by pro-

cedure PROCi

• accessibility – all nodes are referred
through an access procedure for a certain
rule, like for a tree structure the access of a
tree in an inorder way– left-root-right –, in
preorder – root-left-right –, in post order –
left-right-root;
• testability – the capability to view the be-
havior of the element from a structure in dif-
ferent entries;
• interchangeability – the capability to sub-
stitute one node with another that realized at
least the functions of a replaced node;
• finitude – the number of the references
that belong to a closed acceptable interval,
time limitation of a execute period (dura-
tion);
• correctness – the capability of the speci-
fied entry data to obtain the given results;
• generality – the potential to take over any
combination of input data that belong to an
interval. If n ∈ [10, 20] and xi ∈ [1, 100],
the program for computing the average must
offer correct results for series with however
much terms between 10 and 20 and for any
values between 1 and 100;
• determinism – for the same input data,
each time we process we obtain same results;
• stability – the potential to react of a struc-
ture: for short variation of inputs it is ob-
tained short variation of outputs, for big
variation of inputs it is obtained big variation
of outputs; the potential of a structure to keep
the elements on a same levels and to keep the
connections (links) between nodes through:
structural stability – the positions of elements

and links and the behavior stability – little
inputs little outputs;
• accuracy – to hint the error missing or to
incorporate them in acceptable limits speci-
fied in the quality standards;
• consistency – represents the degree of in-
puts and outputs data that satisfy a set of
conditions; we take into consideration the ab-
sence of variation and contradiction;
• correlation – the characteristic of input
data or output data to be reported or com-
pared with similar data;
• relevance – maintenance of nodes into a
state that offer the capability to recover an in-
formation necessary to the user;
• suitability – potential of nodes as applica-
tions to satisfy the necessities of the user at
the request time;
• validity – represents the potential of the
applications from nodes to produce the desir-
able results.

1. The cycle of realizing the distributed
applications
The life cycle of a distributed application in-
cludes the development of the cycle of appli-
cation, the usage cycle, the maintenance cy-
cle and the reengineering cycle.
The development cycle of a distributed ap-
plication consists in the next phases
[IVAN04]:
• analysis – what is built;
• designing – how is built;
• implementation – the real built;
• testing – with quality assurance;
• maintenance.
The analysis phase defines the system’s re-
quirements, in independent mode where they
will be fulfilled. Here is defined the problem
that the client wants to resolve through dis-
tributed application. The result of this phase
is the requirements document that clearly
specifies what have to be built up.
The designing phase succeeds the analysis
phase, based on requirements which establish
the architecture of the distributed system: the
components of a distributed system, the inter-
faces and the behavior mode. The design
document describes the implementation plan
of requirements specified in previous phase.

Revista Informatica Economică nr. 1(45)/2008

84

It is identified the details for programming
languages, developing environments, size of
memory, operating system, algorithms, data
structure, global type definitions, interfaces,
etc.
The implementation phase continues building
the system from zero or from assembling
some pre-existing components. The team has
to manage the problems regarding quality,
performance, libraries and debugging. The
purpose is to produce a proper system. An
important problem is to eliminate the critical
errors.
Testing phase consists in verifying the appli-
cation as a whole, or on components and the
possible errors or not concordance with cus-
tomer requirements are eliminated, corrected
or modified. At the testing of final version, it
will be verified by the client the way of how
it was put in practice his requirements and
the way in which the propose functionalities
are implemented into specifications.
The maintenance phase is the longest phase
and it is lasted on whole cycle time of a
software product, the application has to be
maintain in optimal parameters, has to be su-
pervised and in eventuality of discovering
some errors, others than errors from testing
phases, they have to be eliminated and cor-
rected. Also, it is obtaining information from
the final user for functionality mode and the
possibilities of extending the functionalities
and quality of software product.
The distributed application presumes work in
a network with N workstations. At a work-
station Xi woks Ki persons – users. A special-
ized user Uij activates certain resources of
application. The average time of an assisted
transaction by the specialized user Uij is DTij.
Taking into consideration the costs, for a
transaction of a medium duration DTij we ob-
tain a minimal cost per transaction CTij.
The total cost of utilization CTU will be:

∑∑
= =

=
N

i

K

j
ij

i

CTCTU
1 1

The level of CTU is associated to the struc-
ture with which the distributed application is
endowed.
If the structure is the best defined, CTU <
CTU(Sh) where Sh is any structure with

which the distributed application is endowed.
If the structure is chosen or built without
considering the performance elements which
are spread to the users, at least a structure Sr
will certainly exist for which CTU >
CTU(Sr).
The maintenance is the capability of a struc-
ture to assume the modifications of the prob-
lem solved by the informatics application.
There are design techniques of maintainable
structure, modules that include prognostics
for combination data types of inputs, that the
user didn’t specify but the person who de-
signs the specification can deduce them.
On realizing the time of a distributed applica-
tion it is desired to obtain a higher level of
global efficiency.
On a structure S0 the phases E1, E2, …..En are
covered from the design cycle of the distrib-
uted application. The definition of a structure
is made on the beginning of the phases.
If the structure is perfect the costs C1, C2, …,
Cn will be strictly specified for each phase. If
the structure is not well or has to be modified
the costs C1+CA1, C2+CA2, …Cn+CAn will
exist, where CA1, CA2. …, CAn are the costs
determinate by all what has to be done on
distributed application because the structure
was modified from S0 to Sh, nh ≤ .
The application is executed and we have the
costs CE1, CE2, …CEm, where m is the num-
ber of users.
The application enters in maintenance proc-
ess. If the structure suffers modification from
Sh to Sh+i the maintenance costs specified to
the structures will appear.
The later the necessity of redefinition is iden-
tified, the higher the costs of modifying the
application are.
The total cost generated by the structure of
application appears like an additional cost
due to the imperfection of the structure.
CGS=(CA1 + CA2 + … + CAn)+ CNPU +
CSM
where:
CGS – global cost of structure
CNPU – the cost of non performance of user
CSM – additional costs generated in mainte-
nance by the modification of structure
A structure Sx is globally efficient, if for any

Revista Informatica Economică nr. 1(45)/2008

85

other structure Sy:
CGS(Sx) < CGS(Sy)
where:
Sy – other structure

2. Construction of defined structures
The defined structure corresponds to the con-
cept that the structure of application is not
modified once it was established. The struc-
ture presupposes components and elements
between which there are many dependencies.
The types of defined structure are:
• linear structures;
• tree structure;

• graph structure.
The flows of defined structures are:
• non-oriented;
• unidimensional oriented;
• bidimensional oriented.
We defined a linear structure with n nodes
X1, X2, …Xn. Each node Xi is linked with an
oriented arc to node Xi+1, where Xi represents
procedures or modules of distributed applica-
tion ale with linear structure. The procedures
or modules are called in cascade or series. In
case a procedure or a model doesn’t function
the whole application is non-functional.

X1 X2 X3 Xn …

Fig.6. Linear defined structure

It is defined a tree structure with n nodes X1,
X2, …Xn. Each node Xi with i>1 has a parent
and is linked to an oriented arc by the node
Xj, on an inferior level. The procedures or

modules are called hierarchically. In case a
procedure or a module doesn’t function, all
the descendent procedures don’t function.

X1

X4 X5

X3 X2

X6 X7

….. ….. ….. …..
Fig.7. Tree defined structure

It is defined a graph structure with n nodes
X1, X2, …Xn. Each node Xi is linked with an
oriented arc by any node Xj from structure.
In case the procedure or a module doesn’t
function, the application is still functioning if
the node that does not function, doesn’t de-
termine the isolation of the other nodes, that
is the ways between the nodes are keep on
functioning.
The definition of defined structured applica-
tion means:
• identifying the modules;
• defining the relation between modules;
• defining the type of structure;
• defining the operations between modules;

The structure is considered defined when:
• all processing functions have been defined;
• the requests of working with modules were
connected to each other;
• all variables have been specified;
• all modules have been built;
• all algorithms have been established.
Redefining of structures of distributed appli-
cations means:
• adding new nodes;
• removing nodes;
• changing the position of the nodes from
level k on level k+1 or from level k on level
k-1;
• modifying content of a node;

Revista Informatica Economică nr. 1(45)/2008

86

• changing the position of nodes into level.

X1

X2 X6

X3

X4

X5

Fig.8. Graph defined structure

The probability to modify structure in phases
of developing cycle is under a level that as-
sures the stability of the structure. The de-
fined structure is a structure with very low
modified probability.
We must create premises to realize well de-
fined structures, as being those which during
the whole cycle of development are not
modified. Coming back to previous phases is
strictly due to the incorrect or incomplete op-
erations that decrease the quality of the ob-
tained components.
The well defined structure generates some
detailed specification and the return is due to
the differences that exist between the in-
crease of detailed specifications and the

module in the stage where the respective
phase is realized. The return means the work
on module. If the structure is not defined, but
is a certain construction, it is worked on
specifications and on module with big costs.
It is demonstrated the stability of structure
using a tree structure. The complexity of the
structure is computed depending on the num-
ber of ponderous nodes NRNp and the num-
ber of ponderous arcs NRAp. For a binary
tree structure, the number of nodes and the
number of arcs are computed depending on
the number of levels for a tree niv.
The number of nodes from a level k is 2k-1.
The weight is given by the level that is the
node, that is k. Therefore we deduce the fol-
lowing formula for computing weight nodes
of a binary tree:

∑
=

−⋅=
niv

k

kkNRNp
1

12

The number of incident arcs in the nodes
from level k is given by the number of nodes
from that level 2k-1, except of the level 1
where we have not an incident arc. We de-
duce the formula for computing the number
of ponderous arcs:

∑
=

−⋅=
niv

k

kkNRAp
2

12

The Mc Cabe complexity for a binary pon-
derous tree structure is:

C=NRAp – NRNp + 2= ∑
=

−⋅
niv

k

kk
2

12 -∑
=

−⋅
niv

k

kk
1

12 + 2 = 1

where:
NRNp – the number of ponderous nodes
NRAp – the number of ponderous arcs
niv – the number of levels
It is observed that for a binary tree structure
that have on levels the maximum nodes, the
complexity is constant and is equal to 1.
It is considered a binary tree structure with
three levels like in Figure 9.
For this structure we have:

17432211 =⋅+⋅+⋅=NRNp

164322 =⋅+⋅=NRAp
C=NRAp-NRNp+2=16-17+2=1
If in this structure is added one node then the
number of level is increased with 1 but the
structure is not complete, that is it has not
maximum number of nodes on level 4, so:

2114432211 =⋅+⋅+⋅+⋅=NRNp
20144322 =⋅+⋅+⋅=NRAp

C=NRAp-NRNp+2=20-21+2=1

Revista Informatica Economică nr. 1(45)/2008

87

 Level 1 X1

X4 X5

X3 X2

X6 X7

Level 2

Level 3

Fig.9. Binary tree structure with three levels

 Level 1 X1

X4 X5

X3 X2

X6 X7

Level 4

Level 3

X8

Level 2

Fig.10. Adding a node in binary tree structure with three levels

It is observed that in this case the complexity
remains equal to 1.
This complexity remains constant if the
structure is homogeneous, and the maximum
number of descendant from every node is the
same.
The stability of a defined structures of dis-
tributed applications is an important charac-
teristic. The distributed technology became
every day more robust but is still immature,
because optimal and safe technologies are
continually experienced, which makes it eas-
ier to implement the applications. Conse-
quently, it is necessary to know the weak
points of the technologies used to correct the
problems arose in order to obtain stable
structures.
To simplify the process of application at the
design level we have to find redundant meth-
ods, to put at good use the reusable compo-
nents, to chose better algorithms for finding
solutions to problem, finding standard tem-
plates for interfaces and processes, identify-

ing the dynamic data flow, etc.
The main purpose is the stability of the de-
fined structure through the stability of the
processes for solving the problems. Often,
the overtaking of memory and resources un-
dermine the stability and the reliability of de-
fined structure. The stability of the algorithm
that is the base of the applications from struc-
ture must all be validated in this time.
The stability characteristic presupposes:
• a correct defined structure;
• a homogenous structure;
• a structure with a low or constant complex-
ity even if the structure that has modifica-
tions;
• a reliable and robust structure;
• a structure where the modules have a high
level of security;
• a fault-proof structure;
• a structure that is easy to maintain in time
and where the next modifications are little or
null;

Revista Informatica Economică nr. 1(45)/2008

88

• a portable structure.
The ways to increase the stability of a de-
fined structure are:
• assuring the homogeneity of connections
between modules;
• providing the nodes with the same levels of
quality characteristics specific to the nodes
which will result in a well aggregated prod-
uct;
• creating the variant of structures and choos-
ing the structure that corresponds to a crite-
rion;
• testing the behavior of the structure and im-
proving it;
• completely defining a problem and assuring
a generality degree including all situations so
that new elements won’t appear in the prob-
lem;
• computing the structure’s complexity and
choosing a structure with low complexity;
• aggregating structures that are not stable to
obtain a stable one.

3. The analysis of the complexity of the
defined structure
The analysis of the complexity of defined
structures presupposes computing the Hal-
stead and McCabe complexity for each struc-
ture.
The Halstead complexity:

CH=n1*log2n1 + n2*log2n2
where:

n1 – number of nodes
n2 – number of arcs

The McCabe complexity:
CMcC=n2 – n1 + 2

where:
n1 – number of nodes
n2 – number of arcs

The linear structure with n nodes from Fig-
ure 6, has m=n-1 arcs.
The Halstead complexity is:

CH(SL)= n*log2n + m*log2m =n*log2n
+ (n–1)*log2(n–1)
where:
n – number of nodes
m – number of arcs

The McCabe complexity:
CMcC(SL)=m – n +2 = (n–1) – n + 2 = 1
This means that the linear structure that has
many components has the McCabe complex-
ity very low that is 1.

In tree structure with niv levels, n nodes and
m arcs, and each node has u descendents, we
deduce the formula:

1
1

−
−

=
u

un
niv

1
1

1
11

−
−

=−
−
−

=−=
u

uu
u

unm
nivniv

The Halstead complexity is :

CH(SA)= n*log2n + m*log2m =
1
1

−
−

u
univ

*log2 1
1

−
−

u
univ

 +
1−
−

u
uu niv

*log2 1−
−

u
uu niv

where:
niv – number of level
u – number of descendents

Mc Cabe complexity:

CMcC(SA)=m – n +2 =
1−
−

u
uu niv

 –
1
1

−
−

u
univ

 + 2 = 1

That means that the tree structure that has
many components has the McCabe complex-
ity very low that is 1.
In a complete graph structure with n nodes
and m arcs, each node having connections
with others n-1 nodes, we deduce the for-

mula:

2

)1(−⋅
=

nnm

Halstead complexity is:

CH(SG)= n*log2n + m*log2m = n*log2n +
2

)1(−⋅ nn *log2
2

)1(−⋅ nn

where:

Revista Informatica Economică nr. 1(45)/2008

89

n – number of nodes
m – number of arcs

Mc Cabe complexity:

CMcC(SG)=m – n +2 =
2

)1(−⋅ nn – n + 2 =
2

)3(−⋅ nn +2

The graph structure that has many compo-
nents has the Mc Cabe complexity very high,
depending on the number of nodes.
Next, we will present the aggregations of
structures, computing the McCabe complex-
ity for them. Let’s define the aggregate op-

erator ο .
The types of aggregations on structures are:
a) The aggregation of a linear structure lead
to a linear structure

X1 X2 X3 Xn1 … Y1 Y2 Y3 Yn2 …

Fig.11. Aggregation of a linear structure

Let’s consider two linear structures SL1 with
n1 nodes and SL2 with n2 nodes. The last
node from structure SL1 is linked with the
first node from structure SL2.
CMcC(SL1)= 1
CMcC(SL2)= 1
CMcC(SL1 ο SL2)= ((n1– 1)+(n2 – 1) +1) –

(n1+n2) +2=1
Therefore CMcC(SL1 ο SL2)≠ CMcC(SL1)+
CMcC(SL2)

b) The aggregation of a tree structure lead to
a tree structure

X1

X4 X5

X3X2

X6 X7

….. ….. …….. Y1

Y4 Y5

Y3 Y2

Y6 Y7

….. ….. …..…..
Fig.12. Aggregation of an unbalanced tree structure

Let’s consider two tree structures SA1 with
n1 nodes and niv1 levels and SA2 with n2
nodes and niv2 levels. A leaf node from
structure SA1 is linked with the root of the
structure SA2.

CMcC(SA1)=1
CMcC(SA2)=1
CMcC(SA1 ο SA2)= (n1-1+n2-1)-
(n1+n2)+2=0

Revista Informatica Economică nr. 1(45)/2008

90

For realizing this aggregation, less balanced
than the previous one, we link the roots of
the two tree structures SA1 and SA2 as de-
scendents of a new node R that became root
of an aggregate structure. The aggregate
structure contains now n1+n2+1 nodes and

n1-1+n2-1+2 arcs.
Then the complexity of aggregation will be:
CMcC(SA1 ο SA2)= (n1-1+n2-1+2)-
(n1+n2+1)+2=1

X1

X4 X5

X3X2

X6 X7

….. ….. ….…..

Y1

Y4 Y5

Y3Y2

Y6 Y7

….. ….. …..…..

R

Fig.13. Aggregation of a balance tree structure

c) The aggregation of graph structures leads to a graph structure

X1

X2 X6

X3

X4

X5

Y1

Y2 Y6

Y3

Y4

Y5

Fig.14. Aggregation of a graph structure

Let’s consider two graph structures SG1 with
n1 nodes and SG2 with n2 nodes. A node
from structure SG1 is linked to a node from
structure SG2.

CMcC(SG1)=
2

)31(1 −⋅ nn +2

CMcC(SG2)=
2

)32(2 −⋅ nn +2

CMcC(SG1 ο SG2)=

(
2

)11(1 −⋅ nn +
2

)12(2 −⋅ nn) -

(n1+n2)+2=
2

)31(1 −⋅ nn +

2
)32(2 −⋅ nn +2

d) The aggregation of a linear structure with tree structure leads to a tree structure

Revista Informatica Economică nr. 1(45)/2008

91

X1 X2 X3 Xn1…

Y4 Y5

Y3 Y2

Y6 Y7

….. ….. ….. …..
Fig.15. Aggregation of a linear structure with tree structure

Let’s consider a linear structure SL1 with n1
nodes and a tree structure SA2 with n2 nodes.
The last node from structure SL1 is root for
structure SA2.

CMcC(SL1)= 1

CMcC(SA2)=1
CMcC(SL1 ο SA2)= (n1-1+n2-1) – (n1+n2-1)
+ 2=1
Deci CMcC(SL1 ο SA2)≠ CMcC(SL1)+
CMcC(SA2)

e) The aggregation of a linear structure with graph structure leads to a graph structure

X1 X2 X3 Xn1…

Y2 Y6

Y3

Y4

Y5

Fig.16. Aggregation of a linear structure with tree structure

Let’s consider a linear structure SL1 with n1 nodes and a graph structure SG2 with n2 nodes.
The last node from structure SL1 is node from structure SG2.

CMcC(SL1)= 1

CMcC(SG2)=
2

)32(2 −⋅ nn +2

CMcC(SL1 ο SG2)= (n1-1+
2

)12(2 −⋅ nn) – (n1+n2-1) + 2=
2

)32(2 −⋅ nn +2

Therefore CMcC(SL1 ο SG2)= CMcC(SG2)

f) The aggregation of tree structure with graph structure leads to a graph structure

Revista Informatica Economică nr. 1(45)/2008

92

X1

X4 X5

X3X2

X6 X7

….. ….. …….. Y1

Y2 Y6

Y3

Y4

Y5

Fig.17. Aggregation of a tree structure with graph structure

Let’s consider a tree structure SA1 with n1 nodes and a graph structure SG2 with n2 nodes.
One leaf node from structure SA1 is linked to a node from structure SG2.

CMcC(SA1)= 1

CMcC(SG2)=
2

)32(2 −⋅ nn +2

CMcC(SA1 ο SG2)= (n1-1+
2

)12(2 −⋅ nn +1) – (n1+n2) + 2=
2

)32(2 −⋅ nn +2

So CMcC(SA1 ο SG2)= CMcC(SG2)

4. The defined structure for a virtual store
The applications in virtual stores are web ap-
plications for presenting and e-commerce.
The client analyses the offer in an online
store by accessing the pages from the store’s
site, chooses the desired products which he
stores into a virtual basket and then when he
is determined to buy them, he sends a request
to start the electronically transaction for buy-
ing. The payment is done by electronic card.
The client provides the personal data and in-
formation regarding his card to a server S1
that authenticates the information sent by the
client and it makes the connection with the
account from the bank where he has card,
from where he will pay the products to the
store or product company. On this server
there is an application of the type payment
gateway that represents an interface between
operations from banking network and elec-
tronic transaction. This application with

transaction for buying is named Point Of Sale
- POS.
All information relating the products to be
bought, regarding customer’s requests, re-
garding the information sent by the customer,
are stored into a database located on the web
server. The administration of the supplies and
the update of the database are done by the
application server named S.
After the validation and authentication of
customer’s card has been done, the server S
sends the requests of the customer to the
server S2, that makes the link with the pro-
ducers of goods and it places the request of
customer to them. They do the delivery of
goods at customer domicile directly, by mail,
or through other delivery mode. The server
S2 communicates with server application S
which sends the confirmation that the prod-
ucts were delivered and then updates the
supply from database.

Revista Informatica Economică nr. 1(45)/2008

93

Payment Gateway

INTERNET

Client 1

Client 2

Client 3

Client n

Web
Server

Database

Server
S1

Server
S2

Server
S

Goods
Producer

BANK

VISA
MASTERCARD

Delivery of products

Fig.18. The structure of a virtual online store application

The web applications such as a virtual store
have tree structure. For choosing a product,
the user has to cover a complete way in the
tree from the root to the leaf nodes
[IVAL05].
An important aspect, that has to be take in
account to design such a kind of application,
is that the application has the facilities to
auto-organize in dynamic mode depending
on the reference frequencies of correspond-
ing pages [IVAL05].
The quality characteristics of an application
like virtual store according to [IVAN07] are:
• functionality – the ability to satisfy the
needs and requirements of the user; the im-
portant sub-characteristics of this characteris-
tic are:

- completeness - referring to the degree
where the application comprises the nec-
essary and sufficient functions for satisfy-
ing the user requirements;
- correctness – specifies the degree where
the results are closer than real results;
- security – the quality to assure the data
security against data losses and non-
authorizing access;
- compatibility – the degree where the ap-
plication is implemented without modify
existing major software;
- interoperability – the capability to com-

municate with other applications.
• reliability – capability of application to
maintain the performance level in stable con-
ditions, on a stable period of time; the sub-
characteristics of this are:

- fault detection – the degree where the
application continues to operate in spite of
the errors without affecting the user;
- availability – the degree where the prod-
uct is operational taking into account the
flaw of the hardware or software system;
- recoverability – refers to re-establishing
the level of performance and the recovery
of data direct affected with specify efforts
when fault of system.

• usability – is the set of attributes that per-
mits the effort specified by using from a set
of users or implicit users:

- easy to use – represents the effort of user
to understand and use the application;
- operability – refers to operating and con-
trolling of the operation from the users.

• efficiency – the set of attributes that al-
lows keeping the relation between the level
of software performances and the level of us-
ing resources in special stable conditions; the
sub-characteristics of this are:

- time’s economy – the application capac-
ity to process data and to offer results in
optimal intervals of time;

Revista Informatica Economică nr. 1(45)/2008

94

- resource’s economy – the capacity of
application to offer final situations using
limited software and hardware resources,
when the quality rapport results/cost are to
be optimal.

• maintainability – the set of attributes that
refers to the necessary effort for doing certain
modifications; the modifications include cor-
rections, the adaptation of application in a
context of change and the modifications of
specification requirements and functionality;
the sub-characteristics of this are:

- correction – refers to the effort for cor-
recting the software errors and for meeting
the user requirements;
- development – the necessary of re-
sources to improve the application.

• portability – the set of attributes that as-
sure the capability of application to transfer
from a context to another; the context in-
cludes organizational, hardware and software

context; the sub-characteristics of this are:
- hardware independence – the degree
where the application does not depend on
specific hardware environment;
- software independence – the degree
where the application does not depend on
specific hardware environment, for exam-
ple operating systems;
- reusability – the degree where the soft-
ware is reusable in products differently,
such as the initial product.

We consider a virtual store application for
presenting and marketing IT products, as in
Figure 19. For choosing a certain computer,
the user starts from the root to the leaf nodes.
The user chooses initially the Computer sec-
tion, then the type of computer like Desktop
or Notebook, then the producer Dell or HP,
and finally the type of processor of computer.

Notebook

Intel AMD

HPDell

Desktop

HPDell

Computers

Intel AMD Intel AMD Intel AMD
Fig.19. The initial organization of a tree structure for an online virtual store application

If the application quantifies the frequency of
reference for web page, when, after a while,
it is observed that the maximum frequency is
associated with the producer, then the tree

structure will be re-organized in a dynamic
mode in order to reflect the user’s prefer-
ences, as in Figure 20.

Dell

Intel AMD

DesktopNotebook

HP

DesktopNotebook

Producer

Intel AMD Intel AMD Intel AMD
Fig.20. Re-organization of the tree structure for an online virtual store application

depending on the frequencies of reference

Revista Informatica Economică nr. 1(45)/2008

95

In elaborating this type of application we
must try to balance the level of complexity
on structure topology in order for the web
structure to be more homogenous from the
referencing point of view.
The McCabe complexity of this application
is:
CMcC=14 – 15 +2 = 1

5. Conclusions
For realizing a stable structure, even from the
defining phase of the problem, we have to
clarify all the elements so that the specifica-
tions obtained to incorporate the following
points:
• data input types must be completely de-
fined;
• the relation between data types must be
completely defined and oriented;
• the computed and selection models must
be completely and correctly defined;
• the aggregated date must be complete,
correct and consistently defined.
When analyzing the problem, the sub-
definition must be avoided by missing input
data, computed data and aggregated variable,
and supra-definition through inserts of rela-
tions, the redundant data input, or inconsis-
tent generator.
If we consider the distributed applications
AD1, AD2, …ADr that proves the global effi-
ciency, we analyze their structures, and cre-
ate the structure model. At the time when a
new distributed application is necessary, we
try to completely or partially reuse a structure
from the set of model structures.
In this context, at the level of each organiza-
tion we must develop software to build data-
bases automatically populated with levels of
structure and behavior indicators of distrib-
uted applications that are in diverse phases of
elaboration cycle.
In [IVAN05] we develop the software that
uses the containing of databases, adding only
models that defined the indicators for analy-
sis of quality characteristics for distributed
application.
At the same time, validating the models also
takes place, for the stability of the structure

and for analyzing the degree of defining the
structure of the distributed application.
We consider the distributed applications
AD1, AD2, …ADr, taken at the level of esti-
mation of a characteristic Cj using indicator
Qj. The effective level of characteristic Cj is
taken, using the same indicator Qj. When the
differences between the estimated levels and
the effective levels are insignificant, repre-
sented an important weight, we consider the
indicator Qj validated by practice. In the
same way, we will do the same for all the
quality characteristics of the distributed ap-
plication.

Bibliography
[IVAL05] Ion IVAN, Felician ALECU,
Structuri HTML, Editura ASE, Bucureşti,
2005
[IVAM06] Ion IVAN, Cristian AMANCEI,
Stabilitatea coeficientilor modelului global
de calitate software, Editura ASE, Bucureşti,
2006
[IVAN04] Ion IVAN, Cosmin IVAN, Mihai
MARINESCU, Calibrarea aplicaţiilor in-
formatice, Revista Română de Informatică şi
Automatică, vol. 14, nr. 1, 2004
[IVAN05] Ion IVAN, Adrian VISOIU, Baza
de modele economice, Editura ASE, Bucur-
eşti, 2005, ISBN 973-594-571-1
[IVAN06] Ion IVAN, Eugen DUMI-
TRAŞCU, Marius POPA, Evaluating the Ef-
fects of the Optimization on the Quality of
Distributed Applications, Economic Compu-
tation and Economic Cybernetics Studies and
Research, vol. 40, nr. 3-4, 2006, pg. 73 - 85,
ISSN 0424-267X.
[IVAN07] Ion IVAN, Cătălin BOJA, Prac-
tica optimizării aplicaţiilor informatice, Edi-
tura ASE, Bucureşti, 2007, ISBN 978-973-
594-932-7
[IVBO05] Ion IVAN, Catalin BOJA, Man-
agementul calităţii proiectelor TIC, Editura
ASE , Bucureşti, 2005, ISBN 973-594-558-4.
[IVPO05] Ion IVAN, Marius POPA, Entităţi
text, dezvoltare, evaluare, analiză, Editura
ASE, Bucureşti, 2005, ISBN 973-594-663-7

